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Abstract. We propose a simple method to extract the community structure of large

networks. Our method is a heuristic method that is based on modularity optimization.

It is shown to outperform all other known community detection method in terms of

computation time. Moreover, the quality of the communities detected is very good, as

measured by the so-called modularity. This is shown first by identifying language

communities in a Belgian mobile phone network of 2.6 million customers and by

analyzing a web graph of 118 million nodes and more than one billion links. The

accuracy of our algorithm is also verified on ad-hoc modular networks.
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1. Introduction

Social, technological and information systems can often be described in terms of complex

networks that have a topology of interconnected nodes combining organization and

randomness [1, 2]. The typical size of large networks such as social network services,

mobile phone networks or the web now counts in millions when not billions of nodes

and these scales demand new methods to retrieve comprehensive information from their

structure. A promising approach consists in decomposing the networks into sub-units

or communities, which are sets of highly inter-connected nodes [3]. The identification of

these communities is of crucial importance as they may help to uncover a-priori unknown

functional modules such as topics in information networks or cyber-communities in social

networks. Moreover, the resulting meta-network, whose nodes are the communities, may

then be used to visualize the original network structure.

The problem of community detection requires the partition of a network into

communities of densely connected nodes, with the nodes belonging to different

communities being only sparsely connected. Precise formulations of this optimization

problem are known to be computationally intractable. Several algorithms have therefore

been proposed to find reasonably good partitions in a reasonably fast way. This search

for fast algorithms has attracted much interest in recent years due to the increasing

availability of large network data sets and the impact of networks on every day life. One

can distinguish several types of community detection algorithms: divisive algorithms

detect inter-community links and remove them from the network [4, 5, 6], agglomerative

algorithms merge similar nodes/communities recursively [7] and optimization methods

are based on the maximisation of an objective function [8, 9, 10]. The quality of the

partitions resulting from these methods is often measured by the so-called modularity

of the partition. The modularity of a partition is a scalar value between -1 and 1

that measures the density of links inside communities as compared to links between

communities [4, 11]. In the case of weighted networks (weighted networks are networks

that have weights on their links, such as the number of communications between two

mobile phone users), it is defined as [12]

Q =
1

2m

∑

i,j

[

Aij −
kikj

2m

]

δ(ci, cj), (1)

where Aij represents the weight of the edge between i and j, ki =
∑

j Aij is the sum of

the weights of the edges attached to vertex i, ci is the community to which vertex i is

assigned, the δ-function δ(u, v) is 1 if u = v and 0 otherwise and m = 1

2

∑

ij Aij .

Modularity has been used to compare the quality of the partitions obtained by

different methods, but also as an objective function to optimize [13]. Unfortunately,

exact modularity optimization is a problem that is computationally hard [14] and so

approximation algorithms are necessary when dealing with large networks. The fastest

approximation algorithm for optimizing modularity on large networks was proposed

by Clauset et al. [8]. That method consists in recurrently merging communities

that optimize the production of modularity. Unfortunately, this greedy algorithm may
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Figure 1. Visualization of the steps of our algorithm. Each pass is made of two phases:

one where modularity is optimized by allowing only local changes of communities;

one where the found communities are aggregated in order to build a new network of

communities. The passes are repeated iteratively until no increase of modularity is

possible.

produce values of modularity that are significantly lower than what can be found by

using, for instance, simulated annealing [15]. Moreover, the method proposed in [8] has a

tendency to produce super-communities that contain a large fraction of the nodes, even

on synthetic networks that have no significant community structure. This artefact also

has the disadvantage to slow down the algorithm considerably and makes it inapplicable

to networks of more than a million nodes. This undesired effect has been circumvented

by introducing tricks in order to balance the size of the communities being merged,

thereby speeding up the running time and making it possible to deal with networks that

have a few million nodes [16].

The largest networks that have been dealt with so far in the literature are a protein-

protein interaction network of 30739 nodes [17], a network of about 400000 items on sale

on the website of a large on-line retailer [8], and a Japanese social networking systems of

about 5.5 million users [16]. These sizes still leave considerable room for improvement

[18] considering that, as of today, the social networking service Facebook has about

64 million active users, the mobile network operator Vodaphone has about 200 million

customers and Google indexes several billion web-pages. Let us also notice that in most

large networks such as those listed above there are several natural organization levels

–communities divide themselves into sub-communities– and it is thus desirable to obtain

community detection methods that reveal this hierarchical structure [19].
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2. Method

We now introduce our algorithm that finds high modularity partitions of large networks

in short time and that unfolds a complete hierarchical community structure for the

network, thereby giving access to different resolutions of community detection. Contrary

to all the other community detection algorithms, the network size limits that we are

facing with our algorithm are due to limited storage capacity rather than limited

computation time: identifying communities in a 118 million nodes network took only

152 minutes [20].

Our algorithm is divided in two phases that are repeated iteratively. Assume that

we start with a weighted network of N nodes. First, we assign a different community to

each node of the network. So, in this initial partition there are as many communities as

there are nodes. Then, for each node i we consider the neighbours j of i and we evaluate

the gain of modularity that would take place by removing i from its community and by

placing it in the community of j. The node i is then placed in the community for which

this gain is maximum (in case of a tie we use a breaking rule), but only if this gain is

positive. If no positive gain is possible, i stays in its original community. This process

is applied repeatedly and sequentially for all nodes until no further improvement can be

achieved and the first phase is then complete. Let us insist on the fact that a node may

be, and often is, considered several times. This first phase stops when a local maxima of

the modularity is attained, i.e., when no individual move can improve the modularity.

One should also note that the output of the algorithm depends on the order in which

the nodes are considered. Preliminary results on several test cases seem to indicate that

the ordering of the nodes does not have a significant influence on the modularity that

is obtained. However the ordering can influence the computation time. The problem of

choosing an order is thus worth studying since it could give good heuristics to enhance

the computation time.

Part of the algorithm efficiency results from the fact that the gain in modularity

∆Q obtained by moving an isolated node i into a community C can easily be computed

by:

∆Q =





∑

in +ki,in

2m
−

(

∑

tot +ki

2m

)2




−





∑

in

2m
−

(

∑

tot

2m

)2

−

(

ki

2m

)2


 , (2)

where
∑

in is the sum of the weights of the links inside C,
∑

tot is the sum of the weights

of the links incident to nodes in C, ki is the sum of the weights of the links incident to

node i, ki,in is the sum of the weights of the links from i to nodes in C and m is the sum

of the weights of all the links in the network. A similar expression is used in order to

evaluate the change of modularity when i is removed from its community. In practice,

one therefore evaluates the change of modularity by removing i from its community and

then by moving it into a neighbouring community.

The second phase of the algorithm consists in building a new network whose nodes

are now the communities found during the first phase. To do so, the weights of the links
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Figure 2. We have applied our method to the ring of 30 cliques discussed in [23]. The

cliques are composed of 5 nodes and are inter-connected through single links. The first

pass of the algorithm finds the natural partition of the network. The second pass finds

the global maximum of modularity where cliques are combined into groups of two.

between the new nodes are given by the sum of the weight of the links between nodes in

the corresponding two communities [21]. Links between nodes of the same community

lead to self-loops for this community in the new network. Once this second phase is

completed, it is then possible to reapply the first phase of the algorithm to the resulting

weighted network and to iterate. Let us denote by ”pass” a combination of these two

phases. By construction, the number of meta-communities decreases at each pass, and

as a consequence most of the computing time is used in the first pass. The passes are

iterated (see Figure 1) until there are no more changes and a maximum of modularity

is attained. The algorithm is reminiscent of the self-similar nature of complex networks

[22] and naturally incorporates a notion of hierarchy, as communities of communities are

built during the process. The height of the hierarchy that is constructed is determined

by the number of passes and is generally a small number, as will be shown on some

examples below.

This simple algorithm has several advantages. First, its steps are intuitive and easy

to implement, and the outcome is unsupervised. Moreover, the algorithm is extremely

fast, i.e., computer simulations on large ad-hoc modular networks suggest that its

complexity is linear on typical and sparse data. This is due to the fact that the possible

gains in modularity are easy to compute with the above formula and that the number

of communities decreases drastically after just a few passes so that most of the running

time is concentrated on the first iterations. The so-called resolution limit problem of

modularity also seems to be circumvented thanks to the intrinsic multi-level nature

of our algorithm. Indeed, it is well-known [23] that modularity optimization fails to

identify communities smaller than a certain scale, thereby inducing a resolution limit on

the community detected by a pure modularity optimization approach. This observation

is only partially relevant in our case because the first phase of our algorithm involves

the displacement of single nodes from one community to another. Consequently, the

probability that two distinct communities can be merged by moving nodes one by one
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Figure 3. Graphical representation of the network of communities extracted from a

Belgian mobile phone network. About 2M customers are represented on this network.

The size of a node is proportional to the number of individuals in the corresponding

community and its colour on a red-green scale represents the main language spoken

in the community (red for French and green for Dutch). Only the communities

composed of more than 100 customers have been plotted. Notice the intermediate

community of mixed colours between the two main language clusters. A zoom at

higher resolution reveals that it is made of several sub-communities with less apparent

language separation.

is very low. These communities may possibly be merged in the later passes, after blocks

of nodes have been aggregated. However, our algorithm provides a decomposition of

the network into communities for different levels of organization. For instance, when

applied on the clique network proposed in [23], the cliques are indeed merged in the final

partition but they are distinct after the first pass (see Figure 2). This result suggests

that the intermediate solutions found by our algorithm may also be meaningful and that

the uncovered hierarchical structure may allow the end-user to zoom in the network and

to observe its structure with the desired resolution.
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Figure 4. For the largest communities in the Belgian mobile phone network we

represent the size of the community and the proportion of customers in the community

that speak the dominant language of the community. For all but one community of

more than 10000 members the dominant language is spoken by more than 85% of the

community members.

3. Application to large networks

In order to verify the validity of our algorithm, we have applied it on a number of test-

case networks that are commonly used for efficiency comparison and we have compared

it with three other community detection algorithms (see Table 1). The networks that we

consider include a small social network [24], a network of 9000 scientific paper and their

Karate Arxiv Internet Web nd.edu Phone Web uk-2005 Web WebBase 2001

Nodes/links 34/77 9k/24k 70k/351k 325k/1M 2.6M/6.3M 39M/783M 118M/1B

CNM .38/0s .772/3.6s .692/799s .927/5034s -/- -/- -/-

PL .42/0s .757/3.3s .729/575s .895/6666s -/- -/- -/-

WT .42/0s .761/0.7s .667/62s .898/248s .56/464s -/- -/-

Our algorithm .42/0s .813/0s .781/1s .935/3s .769/134s .979/738s .984/152mn

Table 1. Summary of numerical results. This table gives the performances of the

algorithm of Clauset, Newman and Moore [8], of Pons and Latapy [7], of Wakita and

Tsurumi [16] and of our algorithm for community detection in networks of various

sizes. For each method/network, the table displays the modularity that is achieved

and the computation time. Empty cells correspond to a computation time over 24

hours. Our method clearly performs better in terms of computer time and modularity.

It is also interesting to note the small value of Q found by WT for the mobile

phone network. This bad modularity result may originate from their heuristic which

creates balanced communities, while our approach gives unbalanced communities in

this specific network.
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citations [25], a sub-network of the internet [26] and a webpage network of a few hundred

thousands web-pages (the nd.edu domain, see [27]). In all cases, one can observe both

the rapidity and the large values of the modularity that are obtained. Our method

outperforms all the other methods to which it is compared. We also have applied our

method on two web networks of unprecedented sizes: a sub-network of the .uk domain

of 39 million nodes and 783 million links [28] and a network of 118 million nodes and 1

billion links obtained by the Stanford WebBase crawler [28, 29]. Even for these very large

networks, the computation time is small (12 minutes and 152 minutes respectively) and

makes networks of still larger size, perhaps a billion nodes, accessible to computational

analysis. It is also interesting to note that the number of passes is usually very small.

In the case of the Karate Club [24], for instance, there are only 3 passes: during the

first one, the 34 nodes of the network are partitioned into 6 communities; after the

second one, only four communities remain; during the third one, nothing happens and

the algorithm therefore stops. In the above examples, the number of passes is always

smaller than 5.

We have also tested the sensitivity of our algorithm by applying it on ad-hoc

networks that have a known community structure. To do so, we have used networks

composed of 128 nodes which are split into 4 communities of 32 nodes each [30]. Pairs

of nodes belonging to the same community are linked with probability pin while pairs

belonging to different communities are linked with probability pout. The accuracy of

the method is evaluated by measuring the fraction of correctly identified nodes and

the normalized mutual information. In the benchmark proposed in [30], the fraction of

correctly identified nodes is 0.67 for zout = 8, 0.92 for zout = 7 and 0.98 for zout = 6, i.e.,

an accuracy similar to that of the algorithm of Pons and Latapy [7] and of the algorithm

of Reichardt and Bornholdt [31]. To our knowledge, only two algorithms have a better

accuracy than ours, the algorithm of Duch and Arenas [32] and the simulated annealing

method first proposed in [15], but their computational cost limits their applicability to

much smaller networks than the ones considered here. Our algorithm has also been

successfully tested on other benchmarks, such as the ones proposed in [19, 33]. In the

benchmark proposed in [33], for instance, the normalized mutual information is nearly

1 for the macro-communities with a mixing parameter k3 up to 35. It reaches 0.5 when

the mixing parameter is around 55.

To validate the communities obtained we have also applied our algorithm to a

large network constructed from the records of a Belgian mobile phone company. This

network is described in details in [34] where it is shown to exhibits typical features of

social networks, such as a high clustering coefficient and a fat-tailed degree distribution.

The network is composed of 2.6 million customers, between whom weighted links are

drawn that account for their total number of phone calls during a 6 month period. Each

customer is identified by a surrogate key to which several entries are associated, such

as his age, his sex, his language and the zip code of the place where he lives. This

large social network is exceptional due to the particular situation of Belgium where

two main linguistic communities (French and Dutch) coexist and which provides an
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excellent way to test the validity of our community detection method by looking at the

linguistic homogeneity of communities [35]. From a more sociological point of view, the

possibility to highlight the linguistic, religious or ethnic homogeneity of communities

opens perspectives for describing the social cohesion and the potential fragility of a

country [36].

On this particular network, our community detection algorithm has identified a

hierarchy of six levels. At the bottom level every customer is a community of its own and

at the top-level there are 261 communities that have more than 100 customers. These

communities account for about 75% of all customers. We have performed a language

analysis of these 261 communities (see Figure 3). The homogeneity of a community

is characterized by the percentage of those speaking the dominant language in that

community; this quantity goes to 1 when the community tends to be monolingual.

Our analysis reveals that the network is strongly segregated, with most communities

almost monolingual. There are 36 communities with more than 10000 customers and,

except for one community at the interface between the two language clusters, all these

communities have more than 85% of their members speaking the same language (see

Figure 4 for a complete distribution). It is interesting to analyse more closely the

only community that has a more equilibrate distribution of languages. Our hierarchy

revealing algorithm allows us to do this by considering the sub-communities provided

by the algorithm at the lower level. As shown on Figure 4, these sub-communities are

closely connected to each other and are themselves composed of heterogeneous groups

of people. These groups of people, where language ceases to be a discriminating factor,

might possibly play a crucial role for the integration of the country and for the emergence

of consensus between the communities [37]. One may indeed wonder what would happen

if the community at the interface between the two language clusters on Figure 3 was to

be removed.

Another interesting observation is related to the presence of other languages. There

are actually four possible language declarations for the customers of this particular

mobile phone operator: French, Dutch, English or German. It is interesting to

note that, whereas English speaking customers disperse themselves quite evenly in all

communities, more than 60% of the German speaking customers are concentrated in

just one community. This is probably due to the fact that German speaking people are

mainly concentrated in a small region close to Germany, while English speaking people

are spread in the whole country. Let us finally observe that, as can be visually noticed

on Figure 3, French speaking communities are much more densely connected than their

Dutch speaking counterparts: on average, the strength of the links between French

speaking communities is 54% stronger than those between Dutch speaking communities.

This difference of structure between the two sub-networks seems to indicate that the

two linguistic communities are characterized by different social behaviours and therefore

suggests to search other topological characteristics for the communities.
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4. Conclusion and discussion

We have introduced an algorithm for optimizing modularity that allows to study

networks of unprecedented size. The limitation of the method for the experiments

that we performed was the storage of the network in main memory rather than the

computation time. This change of scales, i.e., from around 5 millions nodes for previous

methods to more than 100 millions nodes in our case, opens exciting perspectives as

the modular structure of complex systems such as whole countries or huge parts of

the Internet can now be unraveled. The accuracy of our method has also been tested

on ad-hoc modular networks and is shown to be excellent in comparison with other

(much slower) community detection methods. It is interesting to note that the speed of

our algorithm can still be substantially improved by using some simple heuristics, for

instance by stopping the first phase of our algorithm when the gain of modularity is

below a given threshold or by removing the nodes of degree 1 (leaves) from the original

network and adding them back after the community computation. The impact of these

heuristics on the final partition of the network should be studied further, as well as the

role played by the ordering of the nodes during the first phase of the algorithm.

By construction, our algorithm unfolds a complete hierarchical community structure

for the network, each level of the hierarchy being given by the intermediate partitions

found at each pass. In this paper, however, we have only verified the accuracy of

the top level of this hierarchy, namely the final partition found by our algorithm,

and the accuracy of the intermediate partitions has still to be shown. Several points

suggest, however, that these intermediate partitions make sense. First, intermediate

partitions correspond to local maxima of modularity, maxima in the sense that it is

not possible to increase modularity by moving one single ”entity” from one community

to a neighbouring one. In the first pass of the algorithm, these entities are nodes, but

at subsequent passes, they correspond to larger and larger sets of nodes. Intermediate

partitions may therefore be viewed as local maxima of modularity at different scales.

It is the agglomeration of nodes during the second phase of the algorithm which allows

to uncover larger and larger communities, thereby taking advantage of the self-similar

structure of many complex networks. Second, the final partition found by our algorithm

has a very high value of modularity for a broad range of system sizes (for instance, as

shown in Table 1, our algorithm performs better in terms of modularity than those of

Clauset, Newman and Moore [8], of Pons and Latapy [7] and of Wakita and Tsurumi

[16]). Finally, it is instructive to consider a community C found at the last pass of our

algorithm. In order to test the validity of the sub-communities found at the penultimate

pass, it is tempting to look at community C as a new network, thereby neglecting

links going from C to the rest of the network. By reapplying our algorithm on the

isolated community C, one expects to find very similar sub-communities due to the local

optimization involved at each step. These are, however, very qualitative arguments and

the multi-resolution of our algorithm will only be confirmed after looking in detail at the

hierarchies found in ad-hoc networks with known hierarchical structure [19] or without
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community structure (e.g. Erdös-Renyi random graphs), or after comparing with other

methods incorporating a tunable resolution [33, 38, 39].
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[17] Palla G, Derényi I, Farkas I and Vicsek T, 2005 Nature 435 814.

[18] Raghavan U N, Albert R and Kumara S, 2007 Physical Review E 76 036106.

[19] Sales-Pardo M, Guimera R, Moreira A A and Amaral L A N, 2007 Proc. Natl. Acad. Sci. USA

104 15224.

[20] All methods described here have been compiled and tested on the same machine: a bi-

opteron 2.2k with 24GB of memory. The code is freely available for download on the webpage

http://findcommunities.googlepages.com.

[21] Arenas A, Duch J, Fernández A and Gómez S, 2007 N. J. of Phys. 9 176.
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