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L. EuLER (1707-83) D. KONIG (1884-1944)

Preface

MATHEMATICIANS have often pursued their researches in an erratic and
intuitive way, rather than by the clear light of logic; consequently, the
historical development of the subject frequently differs considerably from
the systematic approach which one finds in most textbooks. In this book
we shall follow an historical approach, and give a self-contained introduc-
tion to the subject of graph theory. We hope that the reader will thereby
come to appreciate the complex web of ideas and influences which come
together to form a mathematical theory.

Our decision to cover the period 1736-1936 is the resuit of a conven-
ient historical accident. In 1736 the first article on a topic relating to
graph theory was written by the Swiss mathematician Leonhard Euler;
just two hundred years later, in 1936, the first full-length book on the
subject, written by Dénes Konig, was published. Of course, graph theory
did not stop in 1936, and we have not felt obliged to exclude all reference
to later work in the subject.

The central feature of this book is a set of thirty-seven extracts taken
from the original writings of mathematicians who contributed to the
foundations of graph theory. Where necessary, these extracts have been
translated into English, and they have been edited by the omission of
certain sections, but no other significant changes have been made. A list
of these extracts may be found on pages (ix)—(x).

The book has ten chapters. Each chapter deals with a particular theme
in graph theory, and contains three or four main extracts; these extracts
are linked by a commentary which traces the historical development
of the theme. Superimposed on this structure is the framework of a
conventional textbook, wherein the relevant mathematical terminology
and notation are explained, in logical progression, as they are required.
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There are a few conventions regarding the organization of this book
which may need some explanation. The references within each chapter
(including those references which occur in the extracts) are labelled in a
single numerical sequence, and they are listed at the end of the chapter.
The only exceptions to this rule are the extracts themselves, which are
referred to by their chapter and letter. The figures in each chapter are
similarly labelled in a single sequence. Terminology relating to graph
theory, defined in the commentary, is printed in bold type; definitions
which occur in the extracts, and those which occur in the commentary but
which are not directly relevant to graph theory, are printed in italics. The
omission of a section from an abstract is signified by a row of five
asterisks. there are also occasional omissions of words or phrases, and
these are indicated by five dots. Additions or alterations to the extracts
are enclosed in square brackets.

At the end of the book there are three appendices. The first of these
gives a brief account of the development of graph theory since 1936. The
second appendix contains biographical information about the main
characters in our story; the reader should note that capital letters are used
in the text for the first mention of all those whose biographies are given in
this appendix. The third appendix is a comprehensive bibliography of the
work on graph theory published in the period 1736-1936.

A book of this kind could not be written without help, in the form of
advice, criticism. and information, from many friends and colleagues. Our
special thanks are due to P. J. Federico, who has spent several years
working on the history of graph theory. He is preparing a book on the
subject which, however, will differ from ours, both in the period covered
and in the trcatment of the material. Mr. Federico has been generous
enough to provide us with drafts of his work, and he has commented in
detail on our text. We have pleasure in thanking him for his assistance.

Our thanks are also due to many others who have assisted our work,
and especially to D. D. V. Morgan, G. de Barra. R. V. Turley, M. Askew
and the staffs of the various libraries who have unearthed a number of
obscure journals to meet our requests. We also thank the secretarial staffs
of the Mathematics Departments of Royal Holloway College and the
Open University for their help with typing the various drafts of the
manuscript.

*k  k k

In this reprint (1998) the text has been modified to take account of recent
historical scholarship. and the reference sections have been expanded and
updated.
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J. B. LisTinG(1808-82)

THE origins of graph theory are humble, even frivolous. Whereas many
branches of mathematics were motivated by fundamental problems of
calculation, motion, and measurement, the problems which led to the
development of graph theory were often little more than puzzles, de-
signed to test the ingenuity rather than to stimulate the imagination. But
despite the apparent triviality of such puzzles, they captured the interest
of mathematicians, with the result that graph theory has become a subject
rich in theoretical results of a surprising variety and depth.

In this chapter we shall be concerned mainly with the origin and
ramifications of one particular puzzle—the problem of the Koénigsberg
bridges. The solution of this problem involves the formulation of several
of the basic concepts of graph theory.

The problem of the Konigsberg bridges

The map in Fig. 1.1 is taken from a book [1] published in the
seventeenth century. It is an artist’s impression of the old city of
Konigsberg in Eastern Prussia, showing the River Pregel which flows
through the city. As can be seen, the Pregel surrounds an island (called
Kneiphof), and, on the right of the map, it separates into two branches.
To enable the citizens of Konigsberg to travel easily from one part of the
city to another. the river was spanned by seven bridges, with such delight-
ful names as Honey Bridge and Blacksmith's Bridge.
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It is said that the people of Konigsberg used to entertain themselves by
trying to devise a route around the city which would cross each of the
seven bridges just once. Since their attempts had always failed, many of
them believed that the task was impossible, but it was not until the 1730s
that the problem was treated from a mathematical point of view and the
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impossibility of finding such a route was proved. In 1736, one of the leading
mathematicians of the time, Leonhard EULER, communicated with other
mathematicians on the problem [16], and wrote an article in which he dealt
with this particular problem and gave a general method for other problems
of the same type. His article was of considerable importance. both for graph
theory and for the development of mathematics as a whole, and we shall give
a translation of it in full [1A]. However, the reader may prefer to stop after
Paragraph 9, and go on to our commentary at the end of the article, since
Euler’s main results will be proved more succinctly later in the chapter.
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1A

L. EULER
SOLUTIO PROBLEMATIS AD GEOMETRIAM SITUS PERTINENTIS
[The solution of a problem relating to the geometry of position]

Commentarii Academiae Scientiarum Imperialis Petropolitanae 8 (1736), 128-140.
(Based on a talk presented to the Academy on 26 August 1735.)

1. In addition to that branch of geometry which is concerned with magnitudes,
and which has always received the greatest attention, there is another branch,
previously almost unknown. which Leibniz first mentioned. calling it the geomeiry
of position. This branch is concerned only with the determination of position and
its properties; it does not involve measurements, nor calculations made with them.
It has not yet been satisfactorily determined what kind of problems are relevant to
this geometry of position, or what methods should be used in solving them.
Hence, when a problem was recently mentioned. which scemed geometrical but
was so constructed that it did not require the measurement of distances, nor did
calculation help at all, I had no doubt that it was concerned with the geometry of
position—especially as its solution involved only position, and no calculation was
of any use. | have therefore decided to give here the method which I have found
for solving this kind of problem. as an example of the gecometry of position.

2. The problem, which 1 am told is widely known, is as follows: in Konigsberg in
Prussia, there is an island A. called the Kneiphof; the river which surrounds it is
divided into two branches, as can be seen in Fig. [1.2), and these branches are
crossed by seven bridges, a, b, ¢, d. e, f and g Concerning these bridges. it was
asked whether anyone could arrange a route in such a way that he would cross
each bridge once and only once. I was told that some people asserted that this was
impossible, while others were in doubt; but nobody would actually assert that it
could be done. From this, 1 have formulated the general problem: whatever be
the arrangement and division of the river into branches, and however many
bridges there be, can one find out whether or not it is possible to cross each bridge
exactly once?

3. As far as the problem of the seven bridges of Konigsberg is concerned. it can
be solved by making an exhaustive list of all possible routes, and then finding
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whether or not any route satisfies the conditions of the problem. Because of the
number of possibilities, this method of solution would be too difficult and
laborious, and in other problems with more bridges it would be impossible.
Moreover, if this method is followed to its conclusion, many irrelevant routes will
be found, which is the reason for the difficulty of this method. Hence I rejected it,
and looked for another method concerned only with the problem of whether or
not the specified route could be found; I considered that such a method would be
much simpler.

4. My whole method relies on the particularly convenient way in which the
crossing of a bridge can be represented. For this I use the capital letters A, B, C,
D, for each of the land areas separated by the river. If a traveller goes from A to
B over bridge a or b, 1 write this as AB—where the first letter refers to the area
the traveller is leaving., and the second refers to the area he arrives at after
crossing the bridge. Thus if the traveller leaves B and crosses into D over bridge
f. this crossing is represented by BD, and the two crossings AB and BD combined
I shall denote by the three letters ABD, where the middle letter B refers both to
the area which is entered in the first crossing and to the one which is left in the
second crossing.

5. Similarly, if the traveller goes on from D to C over the bridge g, I shall
represent these three successive crossings by the four letters ABDC, which should
be taken to mean that the traveller, starting in A, crosses to B, goes on to D, and
finally arrives in C. Since each land area is separated from every other by a branch
of the river, the traveller must have crossed three bridges. Similarly, the succes-
sive crossing of four bridges would be represented by five letters, and in general,
however many bridges the traveller crosses, his journey is denoted by a number of
letters one greater than the number of bridges. Thus the crossing of seven bridges
requires cight letters to represent it.

6. In this method of representation, I take no account of the bridges by which
the crossing is made, but if the crossing from one area to another can be made by
several bridges, then any bridge can be used, so long as the required area is
reached. It follows that if a journey across the seven bridges [of Fig. 1.2] can be
arranged in such a way that each bridge is crossed once, but none twice, then the
route can be represented by eight letters which are arranged so that the letters A
and B are next to each other twice, since there are two bridges. a and b,
connecting the areas A and B: similarly, A and C must be adjacent twice in the
series of eight letters, and the pairs A and D, B and D, and C and D must occur
together once each.

7. The problem is therefore reduced to finding a sequence of eight letters,
formed from the four letters A, B, C and D, in which the various pairs of letters
occur the required number of times. Before I turn to the problem of finding such
a sequence. it would be useful to find out whether or not it is even possible to
arrange the letters in this way. for if it were possible to show that there is no such
arrangement, then any work directed towards finding it would be wasted. | have
therefore tried to find a rule which will be useful in this case, and in others, for
determining whether or not such an arrangement can exist.

8. In order to try to find such a rule, I consider a single area A, into which there
lead any number of bridges a. b. ¢, d, etc. (Fig. [1.3]). Let us take first the single
bridge a which leads into A: if a traveller crosses this bridge. he must either have
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been in A before crossing. or have come into A after crossing, so that in either
case the letter A will occur once in the representation described above. If three
bridges (a. b and c, say) lead to A, and if the traveller crosses all three, then in
the representation of his journey the letter A will occur twice, whether he starts
his journey from A or not. Similarly, if five bridges lead to A, the representation
of a journey across all of them would have three occurrences of the letter A. And
in general, if the number of bridges is any odd number, and if it is increased by
one, then the number of occurrences of A is half of the result.

9. In the casc of the Konigsberg bridges, therefore, there must be three
occurrences of the letter A in the representation of the route. since five bridges
(a b, c, d, e) lead to the area A. Next, since three bridges lead to B, the letter B
must occur twice; similarly, D must occur twice, and C also. So in a series of eight
letters, representing the crossing of seven bridges. the letter A must occur three
times, and the letters B. C and D twice each—but this cannot happen in a
sequence of cight letters. It follows that such a journey cannot be undertaken
across the seven bridges of Konigsberg.

10. It is similarly possible to tell whether a journey can be made crossing each
bridge once, for any arrangement of bridges, whenever the number of bridges
leading to each area is odd. For if the sum of the number of times each letter must
occur is one more than the number of bridges. then the journey can be made; if,
however. as happened in our example, the number of occurrences is greater than
one more than the number of bridges, then such a journecy can never be
accomplished. The rule which I gave for finding the number of occurrences of the
letter A from the number of bridges leading to the area A holds equally whether
all of the bridges come from another area B. as shown in Fig. [1.3], or whether
they come from diffzrent areas, since I was considering the area A alone. and
trying to find out how many times the letter A must occur.

11. If, however. the number of bridges leading to A is even. then in
describing the journey one must consider whether or not the traveller starts his
journey from A for if two bridges lead to A. and the traveller starts from A. then
the letter A must occur twice, once to represent his leaving A by one bridge. and
once to represent his returning to A by the other. If. however, the traveller starts
his journey from anothcr area, then the letter A will only occur once; for this one
occurrence will represent both his arrival in A and his departure from there.
according to my method of representation.

12.  If there are four bridges leading to A. and if the traveller starts from A, then
in the representation of the whole journey, the letter A must occur three times if
he is to cross each bridge once: if he begins his walk in another area, then the
letter A will occur twice. If there are six bridges leading to A, then the letter A
will occur four times if the journey starts from A. and if the traveller does not start
by leaving A, then it must occur three times. So. in general, if the number of
bridges is even. then the number of occurrences of A will be half of this number if
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the journey is not started from A, and the number of occurrences will be one
greater than half the number of bridges if the journey does start at A.

13. Since one can start from only one area in any journey, I shall define,
corresponding to the number of bridges leading to each area, the number of
occurrences of the letter denoting that area to be half the number of bridges plus
one, if the number of bridges is odd, and if the number of bridges is even, to be
half of it. Then, if the total of all the occurrences is equal to the number of bridges
plus one, the required journey will be possible, and will have to start from an area
with an odd number of bridges leading to it. If, however, the total number of
letters is one less than the number of bridges plus one, then the journey is
possible starting from an area with an even number of bridges leading to it, since
the number of letters will therefore be increased by one.

14. So. whatever arrangement of water and bridges is given, the following
method will determine whether or not it is possible to cross each of the bridges:

I first denote by the letters A, B. C, etc. the various areas which are separated
from one another by the water. I then take the total number of bridges, add one.
and write the result above the working which follows. Thirdly, I write the letters
A. B. C. etc. in a column, and write next to each one the number of bridges leading
to it. Fourthly. I indicate with an asterisk those letters which have an even number
next to them. Fifthly, next to each even one I write half the number. and next to
each odd one I write half the number increased by one. Sixthly, I add together
these last numbers. and if this sum is one less than, or equal to, the number
written above, which is the number of bridges plus one, I conclude that the
required journey is possible. It must be remembered that if the sum is one less
than the number written above. then the journey must begin from one of the
areas marked with an asterisk, and it must begin from an unmarked one if the
sum is equal.

Thus in the Konigsberg problem, I set out the working as follows:

Number of bridges 7. which gives 8

Bridges
A. 5 3
B, 3 | 2
C 3 2
p. 3 | 2

Since this gives more than K. such a journey can never be made.

Fia. 1.4,
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15. Suppose that there are two islands A and B surrounded by water which
leads to four rivers as shown in Fig. [1.4]. Fifteen bridges (a, b, c. d, etc.) cross the
rivers and the water surrounding the islands. and it is required to determine
whether one can arrange a journey which crosses each bridge exactly once. First,
therefore, 1 name all the areas separated by water as A, B, C, D, E. F, so that
there are six of them. Next, | increase the number of bridges (15) by one, and
write the result (16) above the working which follows.

_16
A*, 8 4
B*, 4 | 2
Cc*. 4 2
D. 3 2
E, ) 3

P63
16

Thirdly, I write the letters A, B, C, etc. in a column, and write next to each one the
number of bridges which lead to the corresponding area, so that eight bridges lead
to A, four to B, and so on. Fourthly, 1 indicate with an asterisk those letters which
have an even number next to them. Fifthly, I write in the third column half the
even numbers in the second column, and then I add one to the odd numbers and
write down half the result in each case. Sixthly. 1 add up all the numbers in the
third column in turn, and I get the sum 16: since this is equal to the number (16)
written above. it follows that the required journey can be made if it starts from
area D or E, since these are not marked with an asterisk. The journey can be
done as follows:

EaFbBcFdAeFfCgAhRCiDkAmEnApBoEID.

where 1 have written the bridges which are crossed between the corresponding
capital letters.

16. In this way it will be easy, even in the most complicated cases, to determine
whether or not a journey can be made crossing each bridge once and once only. 1
shall, however, describe a much simpler method for determining this which is not
difficult to derive from the present method. after 1 have first made a few
preliminary observations. First, | observe that the numbers of bridges written next
to the letters A. B, C, etc. together add up to twice the total number of bridges. The
reason for this is that, in the calculation where every bridge leading to a given
area is counted. each bridge is counted twice, once for each of the two areas
which i1 joins.

17. It follows that the total of the numbers of bridges leading to each area must
be an even number, since half of it is equal to the number of bridges. This is
impossible if only one of these numbers is odd. or if three are odd. or five, and so
on. Hence if some of the numbers of bridges attached to the letters A. B, C, etc.
are odd. then there must be an even number of these. Thus, in the Konigsberg
problem, there were odd numbers attached to the letters A, B. C and D, as can
be seen from Paragraph 14, and in the last example (in Paragraph 15). only two
numbers were odd, namely those attached to D and E.
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18. Since the total of the numbers attached to the letters A, B, C, etc. is equal to
twice the number of bridges, it is clear that if this sum is increased by 2 and then
divided by 2, then it will give the number which is written above the working. If,
therefore, all of the numbers attached to the letters A, B, C, D, etc. are even, and
half of each of them is taken to obtain the numbers in the third column, then the
sum of these numbers will be one less than the number written above. Whatever
area marks the beginning of the journey, it will have an even number of bridges
leading to it, as required. This will happen in the Konigsberg problem if the
traveller crosses each bridge twice, since each bridge can be treated as if it were
split in two, and the number of bridges leading into each area will therefore be
even.

19. Furthermore, if only two of the numbers attached to the letters A, B, C, etc.
are odd, and the rest are even, then the journey specified will always be possible if
the journey starts from an area with an odd number of bridges leading to it. For, if
the even numbers are halved, and the odd ones are increased by one, as required,
the sum of their halves will be one greater than the number of bridges, and hence
equal to the number written above.

It can further be seen from this that if four, or six, or eight ... odd numbers
appear in the second column, then the sum of the numbers in the third column
will be greater by one, two, three ... than the number written above, and the
journey will be impossible.

20. So whatever arrangement may be proposed, one can easily determine
whether or not a journey can be made, crossing each bridge once, by the
following rules:

If there are more than iwo areas to which an odd number of bridges lead. then
such a journey is impossible.

If, however, the number of bridges is odd for exacily two areas, then the journey is
possible if it starts in either of these areas.

If, finally, there are no areas to which an odd number of bridges leads. then the
required journey can be accomplished starting from any area.

With these rules, the given problem can always be solved.

21. When it has been determined that such a journey can be made, one still has
to find how it should be arranged. For this 1 use the following rule: let those pairs
of bridges which lead from one area to another be mentally removed. thereby
considerably reducing the number of bridges; it is then an easy task to construct
the required route across the remaining bridges. and the bridges which have been
removed will not significantly alter the route found, as will become clear after a
little thought. 1 do not therefore think it worthwhile to give any further details
concerming the finding of the routes.

Euler’s treatment of the Konigsberg problem involved two major steps.
First, in Fig. 1.2, he replaced the map of the city by a simple diagram
showing its main features, and then, in Paragraphs 4 and 7 of his article,
he formulated the problem in such a way that the diagram became
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FiG. 1.5.

unnecessary. He denoted the four land areas by the symbols A, B, C, D,
and the seven bridges by a. b, ¢, d, e, f. g, where the bridge a joins A and
B, e joins A and D, and so on. This is an example of what we now refer
to as a ‘graph’, and Euler’s problem of finding a sequence of eight
symbols with a particular property (described in Paragraph 7) is related to
the existence of a special kind of ‘path’ in the graph.

To explain the exact meaning of these terms we must give some
definitions. A graph consists of a finite set of vertices, a finite set of edges,
and a rule which tells us which edges joim which pairs of vertices.
Normally, an edge joins two distinct vertices, but exceptionally the two
vertices may coincide; in the latter case the edge is said to be a loop. In
our particular example there are four vertices, corresponding to the land
areas A, B, C, D. and seven edges. corresponding to the seven bridges:
the rule tells us that the edges a and b join the vertices A and B, the
edges ¢ and d join the vertices A and C, and so on. We also define a path
in a graph to be a sequence of vertices and edges,

Vo, €1, U1. €2, V3, . .., U1, € Upy

in which each edge e, joins the vertices v,., and v, (I=<i=<r).

It is helpful to illustrate these abstract definitions by representing a
graph pictorially. We depict a graph as a diagram of points and lines. in
which the points represent vertices and the lines represent edges; a
diagram for the Konigsberg graph is shown in Fig. 1.5. It should be noted
that this is merely a convenient way of describing the graph—we repeat
that the graph itself is an abstract entity consisting of the four vertices A,
B. C, D. the seven edges a, b. ¢, d, e. f. g. and the rule which tells us
how the edges join the vertices. Nevertheless, the pictorial representation
of graphs is a very useful technique and we shall use it throughout this
book.

We may now formulate the problem of the Konigsberg bridges using
the terminology just introduced: the object of the problem is to find a
path which contains each edge of the graph once and only once. A path of
this kind is now called an Eulerian path. and Euler showed that the
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Konigsberg graph has no such path. He also investigated the existence of
Eulerian paths in general graphs.

In order that a graph should contain an Eulerian path, it is clearly
necessary that the graph should be connected; this means that for any two
vertices v and w it is possible to find a path beginning at v and ending at
w. so that the graph is ‘all in one piece’. Euler took this condition for
granted, since it was automatically satisfied in the examples he consid-
ered. A disconnected graph, that is, one which is not connected, splits up
into connected parts, called its components.

We need only one more definition at this stage. The valency (or degree)
of a vertex v is the number of edges which meet at v; for example, in the
Konigsberg graph, the valency of the vertex A is five, and the valencies of
B, C. and D are all three. (The reason for the name ‘valency’ will be
given in Chapter 4.) Notice that if we add the valencies of all the vertices
in a graph, then the sum is just twice the number of edges in the graph,
since each edge contributes twice to the sum. This fact was mentioned in
Paragraph 16 of Euler’s article, and it yields the useful result (Paragraph
17) that. in any graph, the number of vertices with odd valency must be
even. This is sometimes referred to as the ‘handshaking lemma’, since it
tells us that if the guests at a party shake hands when they meet, then the
number of guests who have shaken hands an odd number of times must
necessarily be even.

We now have all the terminology we need to state Euler’s main result,
given in lines 4 and 5 of Paragraph 20: if a connected graph has more than
two vertices of odd valency. then it cannot contain an Eulerian path. In the
same paragraph, Euler also stated the converse result: if a connected
graph has no vertices of odd valency, or two such vertices. then it contains
an Eulerian path. Unfortunately, Euler did not give a proof of the latter
result, presumably because he considered it to be self-evident. This lack
of precision was quite common among eighteenth-century mathemati-
cians. and occasionally it led them into the realm of fantasy, as when
Euler asserted the truth of the equation

I-1+1-14+1-... =4

Nevertheless, Euler’s graph-theoretical intuition was correct, although
a complete proof of the converse result did not appear in print until 1873
[1B]. The proof was due to a young German mathematician. Carl
HierRHOL.ZER, whose work was prepared for publication by a colleague, C.
Wiener. The tragic circumstances were explained in a footnote:

Privatdocent Dr. Hierholzer, unfortunately prematurely snatched away by
dcath from the service of scholarship (died 13 September 1871), reported
on the following investigation to a circle of mathematical friends. It was in
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order to save it from oblivion (and it had to be reconstructed without any
written record) that I sought to complete the following as accurately as
possible. with the help of my esteemed colleague Liroth.

1B

C. HIERHOLZER
'BER DIE MOGLICHKEIT. EINEN LINIENZUG OHNE

WIEDERHOLUNG L'ND OHNE UNTERBRECHNUNG ZU UMFAHREN

[On the possibility of traversing a line-system without repetition or discontinuity]
Mathematische Annalen 6 (1873). 30-32.

In an arbitrary system of interwoven lines, we can define the branches at a point
to be the distinct lines of the network along which it is possible to leave the point
in question. A point at which there are several branches is called a node, and is
termed as many-fold as the number of branches there, being called odd or even
according as this number is odd or even. Thus, an ordinary double point may be
called a four-fold node, an ordinary point is a two-fold node, and a free end may
be termed a one-fold node.

If a line-system can be traversed in one path without any section of line being
traversed more than once. then the number of odd nodes is either zero or two. If, in
carrying out this process, we pass through any node, then two of the branches at
that node are used. and since no line-segment may be traversed twice, a node
which we pass through n times must be a 2n-fold node. A point can therefore be
an odd node only if on one occasion we do not pass through it, that is, if it is an
initial or terminal point. If, on reaching the end of the journey, we return to the
starting point, then there can only be even nodes; if not, then the initial and
terminal points are odd nodes.

Conversely: if a connected line-system has either no odd nodes or two odd nodes,
then the system can be traversed in one path.

For (a) if only part of the line-system has been traversed. then every node in
the remaining part remains even or odd, just as it was in the original system; only
the initial and terminal nodes of the traversed part change their parity, unless they
coincide. This is because two branches are used in passing through a node, and
only one branch is used at the start and finish of the path.

(b) If we begin to traverse the system at an odd node. then we can finish only at
another odd node. This is because two branches are used each time we pass
through an even node, so that each time we arrive ai such a node, there is at least
one other branch available to depart along. However, the initial node is converted
at the beginning to an even node, so that it is also impossible to stop there. On the
other hand. if we start to traverse the system at an even node, then we can also
terminate at the same node, since it is changed at the outset to an odd one.

(c) If. now, the system has two odd nodes, then a path beginning at one of them
necessarily terminates at the other. In this case the completed part of the path is
open. If, on the other hand, the given system has no odd nodes. then a path
beginning at any node (which must be an even node) must necessarily terminate at
that same node. In this case the completed path is closed.
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